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Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems,
such as the cell cycle or intracellular Ca2+ release. Recent studies with simplified models have identified two
advantages of coupling fast and slow feedback loops. This dual-time structure enables a fast response while
enhancing resistances of responses and bistability to stimulus noise. We now find that �1� the dual-time
structure similarly confers resistance to internal noise due to molecule number fluctuations, and �2� model
variants with altered coupling, which better represent some specific biochemical systems, share all the above
advantages. We also develop a similar bistable model with coupling of a fast autoactivation loop to a slow loop.
This model’s topology was suggested by positive feedback proposed to play a role in long-term synaptic
potentiation �LTP�. The advantages of fast response and noise resistance are also present in this autoactivation
model. Empirically, LTP develops resistance to reversal over �1 h. The model suggests this resistance may
result from increased amounts of synaptic kinases involved in positive feedback.
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INTRODUCTION

Many biological systems have positive feedback as a core
regulatory element that generates steep, or even switchlike,
responses to graded stimuli �1–6�. Well-studied cases include
inositol 1,4,5,-trisphosphate �IP3�-induced release of Ca2+

from the endoplasmic reticulum �ER� �7�, the triggering of
cell mitosis �8,9�, and maturation of Xenopus oocytes
�10,11�. Often, dual positive feedback loops reinforce each
other. For example, rapid positive feedback in which Ca2+

enhances its own release from the ER is reinforced by a
slower rise in cytosolic Ca2+ due to plasma membrane influx.
This influx is mediated by store-operated Ca2+ channels ac-
tivated following depletion of ER Ca2+ �12,13�. Multiple
positive feedback loops have been postulated to contribute to
the formation and maintenance of long-term potentiation
�LTP� of synaptic connections. Similarly, in invertebrates,
multiple positive feedback loops have been posited to con-
tribute to long-term facilitation of synapses �LTF� �14�. In
the mollusc Aplysia, a positive feedback loop involving the
transcription factor CREB1 plays an essential role in LTF
�15�.

Two recent studies have used simple, generic models to
examine how organisms might gain an advantage by using
reinforcing positive feedback loops. Brandman et al. �2� con-
sidered a two-loop monostable model in which species A and
B cooperate additively to enhance production of an output
species Cout. Cout feeds back to increase the production of
both A and B. For the case of one loop fast, with a small time
constant for A to adjust to changes in Cout, and the second
loop slow, with a slow time constant for B to adjust to Cout,
two advantages were found. The fast loop enabled a rapid
response, with Cout rising quickly after stimulus. The slow
loop increased the robustness of response amplitude and

shape. Its slow time constant filtered out stimulus fluctua-
tions, decreasing fluctuations in Cout. Such a fast-loop–slow-
loop arrangement is termed a dual-time system. Following
stimulus removal, a slow turn off of Cout production was
observed in this monostable model, the rate of which was
governed by the slow time constant of the B variable.

Zhang et al. �16� studied a similar, dual-time model that
exhibits bistability and hysteresis due to stronger positive
feedback from Cout to the synthesis of A and B. Cout remains
elevated after stimuli are terminated. Such a bistable model
represents a switch in which a brief stimulus can cause a
persistent state change. The fast positive feedback loop was
again found to drive a rapid stimulus response, and the slow
loop increased the stability of the basal and elevated states
against stimulus fluctuations. In gene regulation, bistable
switches have been hypothesized to convert brief stimuli into
long-lasting state changes, such as cellular differentiation �4�
or persistent gene activation �6,17�.

In the above models, A and B add together to increase
production of Cout. Similar generic models can describe in-
terlocking feedback loops with other topologies. For ex-
ample, A and B may multiply to increase production of Cout.
This multiplicative case seems to better describe some bio-
chemical systems �see Discussion�. The present study exam-
ines ways in which multiplicative production of Cout affects
responses to stimuli. In addition, the present study investi-
gates the robustness of stimulus responses and steady states
against internal system noise �stochastic fluctuations in the
copy numbers of molecules�. Internal noise can destabilize a
bistable system, causing random jumps between states
�18,6�. Brandman et al. �2� and Zhang et al. �16� did not
examine whether a dual-time architecture confers resistance
to internal noise.

Additive and multiplicative production of Cout share a
common “convergent” topology �Fig. 1�a�, A and B converge
to produce Cout�. We also examined the dynamics of a dis-
tinct, but similar topology in which the fast variable A en-*john.h.byrne@uth.tmc.edu
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hances its own formation and also that of a slow variable B.
B further enhances formation of A. This “autoactivation” to-
pology is motivated by positive feedback postulated to con-
tribute to LTP and/or LTF, in which specific kinases
�CAMKII, MAPK� enhance their own activity directly or
indirectly. Some posited loops involved in LTP or LTF, de-
pendent on kinase phosphorylation and activation, are likely
to have more rapid time constants than other loops dependent
on translation and on transcription �see Results and Discus-
sion for details of loops�. Therefore, this autoactivation
model is dual time. The fast variable A corresponds to the
level of active kinase and the slow variable B corresponds to
the level of total kinase.

For the models of Brandman et al. �2� and Zhang et al.
�16� with feedback modified so that A and B multiply to
increase Cout, we find that the dual-time architecture again

confers resistance to stimulus noise. Following a stimulus,
either a fast or slow turn on of Cout production could be
obtained, depending on parameters. With the model of Zhang
et al. �16�, robustness to internal noise was enhanced by the
dual-time architecture. As the time constant of one loop was
increased, the average time required for molecule number
fluctuations to destabilize a steady state increased rapidly.
With the autoactivation model, the advantages of �a� a rapid
response to stimuli, and �b� resistance of bistability to stimu-
lus noise were again present. Robustness to internal noise
was enhanced by the slow loop. Following a brief imposed
kinase activation, the total kinase amount increased to a new
plateau, at which there was only one stable, elevated, solu-
tion for kinase activity. Subsequent brief stimuli could not
induce a state transition to low kinase activity. These dynam-
ics suggest an explanation for development of resistance of
LTP to depotentiation �see Discussion�.

METHODS

Numerical methods

For simulations with no explicit, external noise sources
�Figs. 2 and 5� the forward Euler method was used for inte-
gration of differential equations, with a time step of 5 ms.
Simulations verified further time-step reductions did not sig-
nificantly improve accuracy. To further verify accuracy, the
simulation of Fig. 5�b� was repeated using the second-order
Runge-Kutta integration method �19�. No significant differ-
ences were observed. Prior to any stimulus, variable values
were determined by equilibration for at least one simulated
day, establishing steady-state levels of concentrations or mol-
ecule numbers. Longer equilibrations did not significantly
alter these levels. The model was programmed in Java and
simulated on Pentium 3 microcomputers �69�.

Bifurcation analysis examined how steady-state levels of
variables �A ,B ,Cout� depend on the strength of a constant
applied stimulus that acts to increase the rate of production
of A and B. The bifurcation software MATCONT was used
�70�.

Simulation of stimulus noise and of stochastic fluctuations
in copy numbers

Stimulus noise was simulated substantially as in Zhang et
al. �16�. A white Gaussian noise term with mean zero was
added to the deterministic stimulus �variable S�. The standard
deviation was 15%–20% of stimulus amplitude, with specific
values given in the text or figure legends. Fluctuations that
took S to negative values were reset to S=0. Ordinary dif-
ferential equations were used with the noisy stimulus term.
The Box-Mueller algorithm �19� generated a Gaussian term
at each time step for which the noise was updated. The noise
term had the form S=S0+���−2 ln�U1�� cos�2�U2� where
U1 and U2 are uniformly distributed random numbers. A
point not discussed in Brandman et al. �2� or Zhang et al.
�16� is that fluctuation amplitudes for model variables de-
pend strongly on the chosen time step between updates of the
noise term. To yield significant fluctuations in the fast vari-
able A but not in the slow variable B, the noise time step
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FIG. 1. �Color online� Dynamics of coupled fast and slow posi-
tive feedback loops. �a� Schematic of the coupling in the models of
Brandman et al. �2� and Zhang et al. �16�. The rate of synthesis of
“output” is proportional to the sum of A and B. “output” feeds back
to enhance the synthesis of A with a fast time constant �A, and
enhances the synthesis of B with a slow time constant �B. This
schematic also describes multiplicative coupling �Eq. �7��. �b� Re-
sponse to a stimulus pulse for the model of Eqs. �1�–�3� �output
synthesis depends on A+B� or the model of Eqs. �1�, �2�, and �7�
�output synthesis depends on A�B�. Stimulus amplitude �param-
eter S� is zero until t=6.7 min, at which time S is set to either 1.5 or
2.5. At t=15 min S is reset to zero. Gaussian stimulus noise is
always present with a standard deviation of 0.15 and an update time
step of 1 s. Model parameters have the standard values given after
Eqs. �1�–�3� and Eq. �7�.
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must be small relative to the time constant of B but not
relative to the time constant of A. For Fig. 1�b�, the noise
time step was 1 s, satisfying this condition.

For stochastic simulations, fluctuations in the copy num-
bers of A, B, and Cout were simulated with the Gillespie
algorithm. This algorithm takes variable time steps, and dur-
ing each time step, exactly one reaction occurs. Which type
of reaction occurs is determined randomly, with the probabil-
ity of each reaction-type proportional to its deterministic rate
expression. For further details see Gillespie �20,21�. In Eqs.
�1�–�9�, each term on the right-hand side corresponds to a
distinct deterministic reaction rate. These rates were used
directly in the Gillespie algorithm. In stochastic simulations,
the molecule numbers are scaled by using a volume factor �.
Increasing � corresponds to increasing volume while keep-
ing average copy numbers per unit volume the same. Zero-
order rate constants, such as basal rates of synthesis of a
molecule, are multiplied by �, as are Michaelis or Hill con-
stants. First-order rate constants are not changed. Second-
order rate constants are divided by �. Fixed upper bounds
for molecule numbers are multiplied by �. � has units of
�M−1 to convert concentration to molecule number. See fig-
ure legends for specific details.

RESULTS

Dual-time, multiplicative positive feedback exhibits stimulus
noise resistance and variable response kinetics

The models of Brandman et al. �2� and Zhang et al. �16�
are schematized in Fig. 1�a�. The equations are as follows:
Brandman et al. �2� �henceforth denoted Mod-B05�,

�A
dA

dt
= �S

Cout
3

Cout
3 + K3��1 − A� − A + kmin, �1�

�B
dB

dt
= �S

Cout
3

Cout
3 + K3��1 − B� − B + kmin, �2�

dCout

dt
= kon�A + B��1 − Cout� − koffCout + kmin out. �3�

Concentration units of �M and time units of s are used. The
following standard parameter values are used unless noted in
the figure legends:

�A = 2.0 s, �B = 125.0 s, K = 0.35 �M,

kmin = 0.01 �M,

kon = 2.0 �M−1 s−1, koff = 0.3 s−1,

kmin out = 0.001 �M s−1.

Zhang et al. �16� �henceforth denoted Mod-Z07�,

�A
dA

dt
= 	k1S + k2

Cout
4

Cout
4 + K4
�1 − A� − A + kmin, �4�

�B
dB

dt
= 	k1S + k2

Cout
4

Cout
4 + K4
�1 − B� − B + kmin, �5�

dCout

dt
= kon�A + B��1 − Cout� − koffCout + kmin out. �6�

Standard parameter values are

�A = 2.0 s, �B = 200.0 s, k1 = 0.1,

k2 = 0.3, K = 0.5 �M,

kmin = 0.01 �M, kon = 1.0 �M−1 s−1,

koff = 0.3 s−1, kmin out = 0.003 �M s−1.

Mod-Z07, but not Mod-B05, is bistable. Bistability in Mod-
Z07 is due to greater nonlinearity in the feedback from Cout
to A and B �16�. Hill coefficients describing activation of A
and B synthesis by Cout are 4 in Mod-Z07 vs. 3 in Mod-B05.
For multiplicative positive feedback, Eqs. �3� and �6� are
replaced by

dCout

dt
= kon�AB��1 − Cout� − koffCout + kmin out. �7�

The multiplicative model variants are denoted Mod-B05-
Mult and Mod-Z07-Mult. Figure 1�a� still schematizes these
model variants. Differences in standard parameter values be-
tween these variants and the original models �Eqs. �1�–�6��
are as follows:

Mod-B05-Mult, kon = 20.0 �M−1 s−1,

koff = 0.3 s−1, kmin out = 0.015 �M s−1,

Mod-Z07-Mult, kon = 12.0 �M−1 s−1,

koff = 0.3 s−1, kmin = 0.02 �M.

Figure 1�b� illustrates stimulus responses for Mod-B05
and Mod-B05-Mult. S is 0 except between t=6.7 min and
15 min. These time courses of Cout were computed with
noisy stimuli, using a Gaussian noise term �see Methods�.
With dual-time feedback, the upper plateau of Cout is resis-
tant to noise �only small fluctuations in Cout occur�. When
Cout has intermediate values not close to 0 or 1, larger fluc-
tuations in Cout are seen �during the turn off of Cout, and the
lower state of Mod-B05�. For Mod-B05-Mult, its lower state
is close to 0, and only small fluctuations in Cout are observed.
Thus, both models exhibit resistance to stimulus noise when
Cout is close to its bounding values �0 or 1�.

In Fig. 1�b�, Mod-B05 exhibits a fast turn on to the stimu-
lus. The feedback loop in which Cout activates A production
is fast �time constant �A=1 s� whereas the loop in which Cout
activates B production is slow ��B=100 s�. Rapid induction
of A by stimulus drives the fast turn on of Cout. After stimu-
lus removal, A falls rapidly, but B remains high for longer,
maintaining high Cout. Cout decays slowly as B returns to its
basal value. Brandman et al. �2� suggested Mod-B05-Mult
should exhibit opposite dynamics from Mod-B05. With
Mod-B05-Mult, a slow turn on to a stimulus pulse should be
followed by a fast turn off after the stimulus. In Fig. 1�b�, for
Mod-B05-Mult and S=1.5, a biphasic turn on of Cout is seen.

INTERLINKED DUAL-TIME FEEDBACK LOOPS CAN… PHYSICAL REVIEW E 79, 031902 �2009�

031902-3



An initial slow increase from t=7 min to 10 min �denoted
by � in Fig. 1�b��, is followed by a rapid increase. For a
greater stimulus �S=2.5�, a faster increase of Cout is seen.
Thus, for Mod-B05-Mult, the kinetics of Cout induction vary
substantially with the stimulus. Because induction is fast for
a strong stimulus, these kinetics are not in general opposite
to the fast turn on of Cout seen with Mod-B05. However, the
turn off of Cout after stimulus removal is consistently rapid.

Figure 2�a� illustrates bifurcation diagrams of bistability
for Mod-Z07 and Mod-Z07-Mult. For each diagram �A+B
for Mod-Z07, A�B for Mod-Z07-Mult� there is a range of
stimulus strength supporting two stable solutions for the con-
centrations of Cout, A, and B. For each diagram, the bistable
range of S is between the knees, or limit points �LP�. The
upper and lower steady states of Cout are stable to small
perturbations and are separated by an unstable middle steady
state. Mod-Z07-Mult tends to support a broader range of
bistability. To examine the resistance of the upper and lower
steady states to stimulus noise, Mod-Z07 and Mod-Z07-Mult
were subjected to Gaussian stimulus noise. The mean value
of S was 0.14 �within the bistability region of Fig. 2�a��, the
standard deviation was 0.15 �same as in Fig. 1�b��, and the
noise update time step was 1 s. Both the upper and lower
states of Fig. 2�a� remained stable, for Mod-Z07 and Mod-
Z07-Mult.

Dual-time feedback loops confer resistance of stimulus
response to internal stochastic noise

Stochastic fluctuations in molecule copy numbers are an
ubiquitous source of internal noise in biological systems.
Does a dual-time architecture confer resistance to this noise?
We examined whether bistability in Mod-Z07 is robust to
internal noise for time-average molecule numbers of
�100–300. The Gillespie algorithm was used �Methods�.
Average molecule numbers vary proportionately with the
volume factor �. Figure 2�b� illustrates that for �=400,
lower and upper steady states are stable to internal noise. The
“averaged Cout” time course is the average of the stimulus
response over 20 simulations. In each simulation, S is at its
basal value, 0.1, until t=33 min. At t=33 min, S was in-
creased to 0.5, returning to 0.1 at t=40 min. S=0.5 is to the
right of the bistability range for Eqs. �4�–�6�. Therefore, the
model transits to the upper steady state. In all 20 simulations,
the system started in a stable, fluctuating lower state and
ended in a stable higher state. However, stability of states
was obtained for both a fast A loop and a slow B loop �time
course of Cout and slower time course of B, �A=2.0 s, �B
=200.0 s� and for both loops fast �superimposed time course
of B with faster fluctuations, �A=�B=2.0 s�. Thus, these
simulations did not demonstrate that a slow B loop conferred
additional stability.

The stability of steady states as a function of �B was ex-
plored further, using ensembles of simulations similar to
those in Zhang et al. �16�. Mod-Z07 was initialized in the
low state. A constant, relatively low stimulus was applied
�S=0.14�. Bifurcation analysis demonstrated that a stable up-
per state exists for this value of S. For an ensemble of 1000
simulations, the time evolution of the fraction of systems that
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FIG. 2. �Color online� Bifurcation in the model of Zhang et al.
�16�. �a� Bifurcation diagrams for the bistable variants of the model
of �Fig. 1�a��. Steady states of Cout are traced as a function of a
constant value of S. Equations �4�–�6� with their standard values
were used to compute the “A+B” curve, and Eqs. �4�, �5�, and �7�
were used for the “A�B” curve. “LP” denotes a limit point at
which a steady state vanishes. Parameters have the standard values.
�b� Bistability in the model of Zhang et al. �16� is preserved with
internal stochastic noise. Equations �4�–�6� were used. The volume
factor �=400. Prior to choosing �, all parameters were at standard
values except kon=1.2 �M–1 s–1, kmin=0.005 �M, kmin out

=0.001 �M s−1. Zero-order rate constants �kmin,kmin out� and the
Hill constant K are multiplied by �. The upper bounds for A, B, and
Cout, which are 1.0 in Eqs. �4�–�6�, are multiplied by �. The
second-order rate constant kon is divided by �. Bistability for �A

fast �2 s� and �B slow �200 s�. The model is initialized in the lower
state with S=0.1. At t=33 min, S is increased to 0.5 for 7 min. The
model transits to the upper steady state. The Cout time course is over
20 simulations. For B, two time courses are shown. Time courses of
B are shown with �B slow �200 s� and with �B fast �2 s�. �c� Simu-
lations of the time course of fluctuation-induced escape from the
lower state to the upper state. Each time course represents the evo-
lution of the fraction Ftrans of simulations that have transited at least
once to the upper state, for an ensemble of 1000 simulations. Model
parameters as in �b� except �B varies.
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underwent a spontaneous, fluctuation-induced transition to
the upper state was followed. On a time scale of hours, this
fraction Ftrans exponentially rose toward 1. Figure 2�c� plots
the time courses of Ftrans as a function of the time constant
�B. For �B fast �2 s� or intermediate �20 s�, Ftrans rises rela-
tively quickly. But for larger values of �B, the increase in
Ftrans is much slower, demonstrating a substantial increase in
the stability of the lower state. In a complementary set of
simulations, with S=0.14 and with initialization of molecule
numbers in the upper state, the stability of the upper state
also increased with �B �not shown�. Thus, these ensemble
simulations succeeded in demonstrating greater stability of
both steady states when the B loop was slow.

Parallel unlinked feedback loops do not give both fast
response and noise resistance

We considered the extent to which coupling of loops is
important for the response properties and noise resistance. A
fast feedback loop in which A activates its own production
was placed parallel to a slow feedback loop in which B ac-
tivates its own production. As above, the rate of production
of Cout is driven by either the sum or the product of A and B.
However, Cout does not influence the production of either A
or B. The model is schematized in Fig. 3�a�. For the case
where production of Cout is driven by a weighted sum of A
and B, the equations are

�A
dA

dt
= SA�1 − A� − A + kmin, �8�

�B
dB

dt
= SB�1 − B� − B + kmin, �9�

dCout

dt
= kon��1A + �2B��1 − Cout� − koffCout + kmin out.

�10�

Standard parameter values are �A=2.0 s, �B=100.0 s,
kminout=0.001 �M s−1, koff=0.3 s−1, kmin=0.01 �M, kon
=0.3 �M−1 s−1. Values for S, �1, and �2 are provided below
and in the legend to Fig 3.

Figure 3�b� illustrates the dynamics of A and B in re-
sponse to an applied, square-wave increase of S from 0 to
1.5, with Gaussian stimulus noise included as in Fig. 1�b�.
The fast variable A increases rapidly to a fluctuating plateau.
Because A is fast, the noise in S drives large fluctuations in
A. When S returns to 0, A returns very rapidly to basal val-
ues. Variable B increases much more gradually to a plateau,
and because its time constant is much longer, the noise in S
drives only small fluctuations in B.

The strength of coupling between Cout and A is given by
the parameter �1 �Eq. �10��, and the coupling between Cout
and B is given by �2. If �1��2, changes in Cout will be
predominantly driven by changes in A, whereas if �2��1,
Cout will mostly be driven by B. We considered two cases:
�1� �1=1.6, �2=0.4 and �2� �1=0.4, �2=1.6. For �1��2, the
response of Cout to a stimulus is similar to that of A. A rapid
increase, substantial fluctuations around a plateau, and a

FIG. 3. �Color online� Dynamics of parallel uncoupled feedback
loops. �a� Model schematic. The rate of synthesis of Cout is propor-
tional to either the sum or product of A and B. A feeds back to
enhance its own synthesis with a fast time constant �A, and B feeds
back to enhance its own synthesis with a slow time constant �B. �b�
Simulated response of A and B to a stimulus. At t=12 min, S is
increased from 0 to 1.5, and remains elevated until t=38 min, at
which time S returns to 0. Gaussian stimulus noise is present with a
standard deviation of 0.3 and an update time step of 1 s. A increases
to a plateau with large fluctuations, whereas B increases slowly with
small fluctuations. �c1� Simulated response of Cout to the stimulus
of �b� with A+B. Rapid time course, Cout is driven mostly by
changes in A ��1=1.6, �2=0.4�. Slow time course, Cout is driven
mostly by changes in B ��1=0.4, �2=1.6�. �c2� Simulated response
of Cout to the stimulus of �b� with A�B. The system is no longer
sensitive to differential changes to the coupling strength of the two
loops.
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rapid decrease are observed �Fig. 3�c1��. For �1	�2, the
response of Cout is similar to that of B, showing only small
fluctuations �slow Cout time course, Fig. 3�c1��. In neither
case, are the dynamics similar to those of Fig. 1�b� or of
Brandman et al. �2�. The combination of a rapid increase in
Cout and a slow decrease is not observed. When Cout does
increase rapidly, fluctuations in Cout are substantial �slow
time course, Fig. 3�c1��, so the combination of a rapid in-
crease and resistance to noise is also not observed. We also
considered the case with production of Cout proportional to
the product of A and B. For this case, noise resistance is also
not obtained, because the slow B loop cannot damp noise in
Cout. The use of the product A�B prevents the coupling of A
to Cout from being made small. Fluctuations in Cout are
driven by fluctuations in A even for constant B �Fig. 3�c2��.

The above simulations indicate that to obtain in concert
the dynamic elements of a rapid increase in Cout, resistance
to noise, and a slow decrease in Cout, the feedback loops
cannot be uncoupled as in Fig. 3�a� and Eqs. �8�–�10�. In-
stead, the loops must be coupled with Cout feeding back to
increase the production of A and B.

A simple, bistable dual-time model represents aspects of the
induction and consolidation of LTP

LTP induction and consolidation has been proposed to
involve positive feedback loops in which kinases such as
CaM kinase II �CAMKII� or mitogen-activated protein ki-
nase �MAPK� directly or indirectly enhance their own phos-
phorylation and activity. Persistent MAPK phosphorylation
and activity might be maintained by reciprocal activation of
MAPK and upstream Raf kinase �22,23� or protein kinase C
and MAPK �24,25�. Self-sustaining phosphorylation and ac-
tivation of CAMKII may occur �26,27�. Inhibition of MAPK
blocks LTP �28�. A feedback loop in which a kinase directly
or indirectly enhances its own phosphorylation and activa-
tion can be generically represented with a variable A that
activates its own production. A represents the amount of ac-
tive kinase. The time scale of this loop is posited to be fast
relative to transcription or translation. The total amount of
kinase could be represented by a variable B, in which case
the amount of active kinase A will be bounded by B. A
differential equation for A can be written, similar to those in
Zhang et al. �16�, and representing autoactivation of A and
the upper bound B,

�A
dA

dt
= �k1S + k2

A4

A4 + K4��B − A� − kdeg AA + kmin A.

�11�

In a coupled, dual-time topology, a second slow positive
feedback loop is posited in which active kinase A acts to
increase total kinase B. The increase in total kinase would, in
turn, tend to further increase the amount of active kinase via
mass action. To argue that this loop is plausible, it is neces-
sary to consider how an increase in active kinase could in-
crease total kinase. MAPK can upregulate translation in neu-
ronal processes �29,30� as can CAMKII �31�. Indeed,
CAMKII regulates the activity of CPEB, which in turn up-
regulates the synthsis of CAMKII during synaptic plasticity

�32–34�. Thus, activation of CAMKII or MAPK could in-
crease translation of proteins important for synaptic strength-
ening. MAPK may also phosphorylate transcription factors,
increasing transcription of proteins important for synaptic
strengthening �see Discussion�. Levels of synaptic MAPK or
CAMKII might therefore be increased by translation, tran-
scription, or recruitment of pre-existing kinase. Finally, in-
creased levels and thus activity of MAPK or CAMKII would
tend to further enhance local translation of synaptic proteins,
thereby closing the positive feedback loop.

In the simplified model, the rate of increase of B is pro-
portional to A. In vivo and in models of learning in neural
networks, synaptic weights have upper bounds. In the model,
an upper bound BMAX must be imposed on B to prevent A
and B from increasing without limit. A differential equation
for B that represents increase proportional to A and satura-
tion at BMAX is as follows:

�B
dB

dt
= k3A�BMAX − B� − B + kmin B. �12�

LTP induction corresponds to a state transition for the level
of A. Consolidation of LTP corresponds to a slow increase in
B. The model is schematized in Fig. 4�a�. Standard parameter
values are

�A = 2.0 s, �B = 3600 s, k1 = 0.1, k2 = 1.0,

K = 0.34 �M, kdeg A = 1.0,

kmin A = 0.08 �M, k3 = 2.0 �M−1,

BMAX = 4.0 �M, kmin B = 0.8 �M.

Bifurcation diagrams illustrate a range of bistability for
this model. Figure 4�b� shows that for constant stimulus am-
plitude ranging from negative values to �0.2, stable lower
and upper states of A and B coexist and are separated by a
middle unstable steady state. In the model, S represents ac-
tivation of signaling pathways such as the MAPK cascade,
with S=0 representing no activation. Thus, the negative val-
ues of S are not considered physiological. As in previous
models, the slow feedback loop �long �B� confers resistance
to stimulus noise. In an ensemble of 100 simulations with a
noisy stimulus, the model was initialized in the lower steady
state. A noisy stimulus with a constant mean of 0.15 was
applied, with model parameters as in Fig. 4�b�. Gaussian
noise with a standard deviation of 30% of the mean was
applied. The time step for noise update was 1 s. This noise
destabilized the lower state, but the resistance to destabiliza-
tion increased rapidly with increases in �B. For �B fast �1 s�,
the time for half of the ensemble simulations to transit out of
the lower state �t0.5� was only 0.1 h. For �B=10 s, t0.5 was
1.0 h. For �B=100 s and for �B=1000 s, respectively, only
11 out of 100 and 3 out of 100 simulations were destabilized
by noise during 6 h.
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Separation of fast and slow variables illustrates the way in
which the upper state of the autoactivation model

acquires resistance to reversal by brief stimuli

Figure 5�a� illustrates that following a state transition of
the autoactivation model from Fig. 4 from the lower to the
upper state of A, the upper state becomes more stable with
time. To induce the transition, the value of S was briefly
increased from its baseline of 0 to 200, for 1 s. The abrupt
increase in A is followed by a gradual increase in both A and
B over the next 2 h, due to the slow positive feedback loop
with �B=1 h. At t=5 h, kdeg A, the degradation rate constant
for A, was briefly increased to try to force A back to a lower
state. Although A was driven to nearly zero, it immediately
recovered to the upper state after kdeg A returned to its basal
value. In contrast, if the same brief increase in kdeg A is ap-
plied earlier, 20 min after the upward transition in A, A is
forced back to a lower state. At that time B is less, so that the
lower state of A is stable. After return of A to the lower state,
B declines to its lower state. Further simulations quantified

the time required for the upper state of A to develop resis-
tance to reversal. No reversal occurred if the brief decrease
in kdeg A was applied more than 46 min after the upward
transition in A.

Empirically, following induction of LTP in vitro, subse-
quent electrical stimuli can reverse LTP only when applied
within �1 h �35,36�. The time course of �1 h could corre-
spond in the model to the time required for increases in the
total amounts of synaptic proteins. Bifurcation analysis was
used to examine whether dynamics of the slow variable B
explain the development of resistance to state reversal. B was
treated as a parameter in determining the steady states of the
fast variable A. This type of fast-slow variable separation is
often used to examine how dynamics of fast variables are
altered gradually by changes in slow variables �37–39�. Fig-
ure 5�b� illustrates that with B fixed at 1.3, both lower and
upper stable states of A exist for positive values of S �S
	0.26�. As B is increased, the rate of synthesis of A in-
creases �Eq. �11��. With B increased to 3.3, the lower stable
state of A only exists at negative values of S. In Fig. 5�b�, at
t=5 h, B=3.3. No stable lower state of A exists for physi-
ological �non-negative� S. Therefore, the upper state of A
cannot be destabilized by brief stimuli. The transition of A to
the upper state has become irreversible due to the subsequent
increase in B.

For LTP induction and maintenance, many of the impor-
tant biochemical processes occur within dendritic spines,
which have volumes on the order of 0.1 femtoliters �fl� �40�.
For these small volumes, molecule copy numbers are limited
and internal noise is likely to be important. The dynamics of
Fig. 5�a� were preserved when internal noise was simulated
using the Gillespie algorithm. We chose � such that the av-
erage copy number of B is �100–300. These copy numbers
correspond to concentrations of 2–5 �M in 0.1 fl. Figure
5�c� illustrates the stability of steady states and the develop-
ment of resistance of the upper state to reversal. The “aver-
age A” time course is over 20 simulations. Stability of upper
and lower states was preserved for all 20 simulations. Resis-
tance to state reversal developed by t=17 h. The downward
spike shows that the upper state was resistant to a brief in-
crease in kdeg A for all 20 simulations. In contrast, another
time course shows that if the increase in kdeg A was applied
soon after the upward transition, before B increased much,
the upper state was not resistant. A was driven back to the
lower state.

Dual-time feedback loops confer resistance of bistability to
internal noise, but increasing system volume has a

greater effect

With the autoactivation model, is the robustness of bista-
bility increased when the feedback loop with B is slow �large
�B�? Using the method of Fig. 2�c�, we examined the time
required for stochastic fluctuations to induce a transition
from the lower state to the upper state. S was set to 0.1, � to
100, and for ensembles of 1000 simulations, the model was
initialized in the lower steady state of A and B. In Fig. 6�a�,
each time course represents the increase over time of the
fraction of simulations Ftrans that have undergone a transition
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FIG. 4. A bistable simplified model representing putative feed-
back loops in LTP and LTF induction and consolidation. �a� Model
schematic. In a relatively fast feedback loop �time constant �A�, a
kinase catalyzes �directly or indirectly� its own phosphorylation and
activation. A denotes the amount of active kinase. An external
stimulus, such as an influx of Ca2+ into a neuron, would provide the
initial kinase activation. In a second slow feedback loop �time con-
stant �B�, A enhances the production of B which in turn promotes
the formation of A. B could represent the total amount of kinase
�inactive+active�. �b� Bifurcation diagram illustrating the steady
states of A and B as a function of a constant stimulus strength.
Standard parameter values following Eqs. �11� and �12� are used.

INTERLINKED DUAL-TIME FEEDBACK LOOPS CAN… PHYSICAL REVIEW E 79, 031902 �2009�

031902-7



to the upper state. The stability of the lower state increases
with �B. However, the increase is not as large as in Fig. 2�c�.
When �B is increased above 100 s, little additional stability is
seen. For �B=1000 s, the rate of increase of Ftrans is only
slightly smaller than for �B=100 s.

In two control ensemble simulations we verified that the
upper and lower states were very stable in the absence of
stimulus �S=0�. Over 24 h, with �B=3600 s, only 1% of
1000 simulations transited out of the lower state. When both
A and B were initialized at elevated values �A=150, B
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FIG. 5. �Color online� Resistance of elevated kinase activity to
reversal by brief stimuli. �a� Development of resistance over time.
At t=2 h, a 1 s elevation of S to 200 induces a transition of A to the
upper state. B increases over the next few hours. At t=5 h, a 100 s
elevation of kdeg A from 1 to 11 fails to induce a state transition
�upper B and A traces�. A drops briefly but returns immediately to
the upper state. If the same brief elevation of kdeg A occurs 20 min
after the transition to the upper state, then A does transit back to the
lower state, after which B slowly declines �lower B and A traces�.
Model parameters are at standard values. �b� Bifurcation diagrams
for A as a function of S. The variable B is treated as a fixed param-
eter, thus only Eq. �11� is used to compute the diagrams. Standard
parameter values following Eqs. �11� and �12� are used. Two bifur-
cation curves each show upper, middle, and lower steady states of
A, for B=3.26 and B=1.26, respectively. �c� Stochastic simulation
of resistance to depotentiation. � was chosen as 100. At t=8 h, a
1 s increase of S to 200 drives an upwards state transition. The
“average A” trace is over 20 simulations. Superimposed is a time
course of A for a single simulation. For all simulations, both the
lower and upper state are stable. Parameter values differ somewhat
from �a� because the lower steady state of �a� is not stable against
internal noise for ��100. The changed parameter values are �B

=3 h, K=0.3 �M, kmin A=0.018 �M, BMAX=3.6 �M, kmin B

=1.2 �M. At t=17 h, a 60 s increase of kdeg A from 1 to 3 fails to
induce a state transition. However, the same brief increase in kdeg A

applied shortly after the upwards transition returns A to the lower
state.
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=300�, none of 1000 simulations transited to the lower state
over 24 h.

Figure 6�b� illustrates that the volume factor � is a much
stronger determinant of the robustness of bistability than is
�B. The time courses illustrate that the rate of increase of
Ftrans decreases rapidly as � increases. Using similar en-
sembles of simulations, Song et al. �41� demonstrated that
for a bistable model of gene regulation, the logarithm of the
mean first passage time �MFPT� from one steady state to
another increased linearly with �. Such a linear dependence
for bistable kinetic models was predicted by Bialek �42�. For
the autoactivation model, we tested this prediction by fitting
exponential curves of the form �1−exp�−kt�� to the time
courses of Fig. 6�b�. In each of the ensembles of simulations
characterized by different �, the average initial rate at which
simulations leave the lower state is proportional to the recip-
rocal of the MFPT. Thus a plot of the logarithm of this rate
vs � is expected to be linear. This initial rate is the derivative
of the exponential function evaluated at t=0, which is simply
k. Figure 6�c� verifies the linearity of the plot ln�k� vs �,
with k denoted by kinit. The points lie close to their linear
least-squares fit. Intuitively, increasing � enhances the ro-
bustness of bistability because � corresponds to increasing
average molecule numbers. With higher average molecule
numbers, stochastic fluctuations in these numbers are rela-
tively less significant, and have less effect on system dynam-
ics.

DISCUSSION

Simple models of coupled feedback loops �2,16� have
proven fruitful for enhancing understanding of the advan-
tages an organism can gain from a dual-time architecture. We
have extended the analyses of Brandman et al. �2� and Zhang
et al. �16� by �1� examining the dynamics conferred by mul-
tiplicative positive feedback in which the intermediate vari-
ables A and B multiply to increase the synthesis rate of the
output variable Cout, and �2� examining whether the dual-
time architecture of these models, with coupled fast and slow
feedback loops, confers robustness of stable states against
stochastic fluctuations in molecule numbers. With multipli-
cative feedback, the dual-time architecture conferred resis-
tance to stimulus noise �Fig. 1�b��. Either a fast or slow turn
on of Cout production could be obtained, depending on pa-
rameters �Fig. 1�b��. A substantial range of bistability was
obtained �Fig. 2�a��. With stochastic fluctuations in molecule
numbers, robustness of bistable steady states was enhanced
by the dual-time architecture. As the time constant of the
slower positive feedback loop was increased, the average
time required for molecule number fluctuations to destabilize
a steady state increased rapidly �Fig. 2�c��.

The multiplicative variants of the models of Brandman et
al. �2� and Zhang et al. �16� were studied because some of
the specific dual-feedback systems noted by Brandman et al.
�2� may be better described by multiplicative feedback. In
muscle cell fate specification, the transcription factor MyoD
is activated by the CDO Ig receptor and in turn upregulates
CDO transcription �43�. This activation of MyoD is via en-
hanced dimerization. In a complementary feedback loop,

MyoD activates transcription of Akt2 kinase, which in turn
phosphorylates and further activates MyoD �44�. If muscle
differentiation depends on having sufficient MyoD that is
both dimerized and phosphorylated, then the feedback nec-
essary for differentiation could be represented by Mod-B05-
Mult with A=Akt2 kinase, B=CDO receptor, and Cout
=fully active MyoD. In B cell fate specification, the cytokine
IL-7 appears to upregulate expression of the necessary tran-
scription factor EBF, with EBF in turn upregulating tran-
scription of the IL-7 receptor �45�. In a second feedback
loop, EBF transcription is upregulated by another transcrip-
tion factor, E2A �46�. If both feedback loops were required to
produce sufficient active EBF to drive B cell differentiation,
then this system might also be represented by Mod-B05-
Mult with A=IL-7 receptor, B=E2A, and Cout=EBF.

We also developed a similar model to represent the dual-
time nature of coupled feedback loops postulated to be in-
volved in LTP �Fig. 4�. LTP induction and consolidation has
been proposed to involve positive feedback in which MAPK
indirectly enhances its own phosphorylation and activity
�23�. Therefore, in the autoactivation model, the variables A
and B could, respectively, represent the levels of active syn-
aptic MAPK and total MAPK. LTP induction and consolida-
tion has also been proposed to involve positive feedback in
which CAMKII enhances its own phosphorylation and activ-
ity �26,27�. Therefore, for modeling LTP, the variables A and
B could, respectively, represent the levels of active synaptic
CAMKII and total CAMKII. To apply the autoactivation
model to LTP, a necessary assumption is that an increase in
active synaptic kinase leads to an increase in total synaptic
kinase. One way this could occur is if potentiated synapses,
with a higher level of active kinase, recruited kinase mol-
ecules diffusing �or being transported� in neuronal processes.
For CAMKII, there is evidence for such recruitment. NMDA
receptor-dependent LTP induced by forskolin application is
accompanied by a substantial increase in the amount of
CAMKII in dendritic spines �47�. Application of NMDA also
increases CAMKII in spines �48�.

With the dual-time autoactivation model, rapid stimulus
responses were obtained �Fig. 5� as was bistability �Fig.
4�b��. The dual-time architecture also stabilized steady states
and responses against stimulus noise. Internal noise due to
fluctuations in molecule numbers was simulated for the au-
toactivation model �Figs. 5 and 6�. The dual-time architec-
ture increased the robustness of bistability to internal noise.
The time required for fluctuations to induce spontaneous es-
cape from one of the two stable states to the other increased
substantially as the B feedback loop was made slower. How-
ever, the increase in stability saturated when �B was �100
times longer than the fast loop time constant �A �Fig. 6�a��.
The volume factor � exerted a much stronger effect on the
stability of steady states �Fig. 6�b��.

For the autoactivation model, the state of elevated kinase
activity develops resistance to reversal by brief stimuli, over
the course of a few hours �Figs. 5�a� and 5�c��. This resis-
tance is due to elimination of the stable lower state by a slow
increase in total kinase amount �Fig. 5�b��. These dynamics
suggest an explanation for the empirical development of re-
sistance of LTP to reversal. Initially, synaptic potentiation
may rely on an increase in active kinase which could be
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rapidly reversed by dephosphorylation of kinase �MAPK or
CAMKII�. Subsequently, a slow increase in total synaptic
kinase may result in persistently elevated kinase activity and
synaptic strength that is resistant to reversal. Empirically,
following induction of LTP in vitro, subsequent electrical
stimuli can reverse LTP only when applied within �1 h
�35,36�. Similar dynamics are observed in vivo �49,50�. The
time course of �1 h in vitro and in vivo could correspond in
the model to the time required for increases in the total
amounts of synaptic proteins. Empirically, the late phase of
LTP �L-LTP� does require both translation and transcription
�51,52�.

A much longer stimulus might still reverse established
L-LTP by decreasing the level of total kinases and other syn-
aptic proteins. In the model, prolonged inhibition of protein
synthesis would sufficiently decrease B to reestablish stabil-
ity of the lower state of active kinase A. Indeed, a sufficiently
large decrease in B is seen to eliminate the stable upper state
of A for S=0, after which A spontaneously falls to the lower
state. For the parameters of Fig. 5�b� and for S=0, the upper
state of A is lost below B=0.5. Empirically, prolonged inhi-
bition of glutamatergic neurotransmission by inducible
NMDA receptor knockout eliminates established LTM
�53,54�. This LTM elimination plausibly corresponds to re-
versal of established LTP due to prolonged block of activity-
dependent protein synthesis.

The slow feedback loop in the autoactivation model pos-
tulates that an increase in active kinase �variable A� leads to
an increase in total kinase �variable B�. Activation of tran-
scription, subsequent to kinase activation, may be one
mechanism that enhances levels of total synaptic kinase. In
mammalian cells, MAPK can phosphorylate and activate ri-
bosomal S6 kinase �RSK� �55� and RSK can phosphorylate
and activate the transcription factor cAMP response element
binding protein �CREB� �56�. Phosphorylation and activation
of CREB in neurons correlates with recruitment of those
neurons into a long-term memory trace �57�, plausibly by
strengthening synapses to or from these neurons. It is plau-
sible that additional positive feedback in which CREB en-
hances its own transcription plays a role in consolidation of
late phases of LTP and LTM. Mammalian CREB has cAMP
response element �CRE� enhancer sequences in its promoter
�58�. CREB activates transcription via binding to CREs.
Thus, activation of CREB might initiate positive feedback
based on CREB autoregulation.

The autoactivation model �Fig. 4�a�� may also describe
aspects of LTF in invertebrates. In Aplysia, MAPK and PKA
are activated during LTF �59,60�. Inhibition of MAPK blocks
LTF �61�. As suggested for LTP, positive feedback involving
persistent MAPK phosphorylation might contribute to LTF.
In Aplysia, activation of the CREB1 transcription factor is
necessary for LTF �62�. Aplysia CREB1 has a CRE �63�, and
is activated by CREB1 �15�. The positive feedback loop in
which CREB1 enhances transcription of CREB1 was re-
cently shown to be important for consolidation of LTF �15�.

Additional positive feedback loops may contribute to LTF.
In one putative loop, enhanced transcription of the ApTBL
gene product increases levels of TGF-
 growth factor, which
acts through receptors to further activate MAPK, phosphory-
late transcription factors, and maintain enhanced transcrip-
tion �14�. In a second proposed loop, protein kinase A �PKA�
acts to induce expression of Aplysia ubiquitin hydrolase �Ap-
uch� �64,65�. Ap-uch regenerates free ubiquitin, prolonging
PKA activity by promoting proteosome-dependent degrada-
tion of the regulatory subunit of PKA �66�. Proteosome-
dependent protein degradation is also necessary for mamma-
lian LTP �67�. Activation of translation might also enhance
levels of kinases such as MAPK. Aggregation of a transla-
tional activator, cytoplasmic polyadenylation element bind-
ing protein �CPEB�, was proposed to maintain enhanced
translation at synapses that have undergone LTF, thereby
maintaining LTF �68�.

The above data suggest that, in both mammals and inver-
tebrates, feedback loops involving regulation of transcription
by CREB and enhanced proteosome-dependent protein deg-
radation may play important roles in the formation of LTM.
The similarity of biochemical pathways involved in LTM in
evolutionarily divergent animals suggests that generic mod-
els similar to those studied here, with simple representations
of fast and slow feedback loops, may help in understanding
memory formation in a broad range of organisms.
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